НАД/Предиспитне обавезе 2021

Извор: SI Wiki
< НАД
Датум измене: 8. јануар 2024. у 18:08; аутор: Tijana (разговор | доприноси) (→‎Решење: 0.008 je, nije negativno)
Пређи на навигацију Пређи на претрагу

Предиспитне обавезе 2021. године обављале су се преко Moodle курса предмета. Решења задатака која су дата су већином решења која су оцењена и проверена, али постоји и неколико примера који нису били тачно решени и дато решење представља исправљено решење (које није оцењено). Такође, у неким примерима је за оцену грешке потребно узети одговарајуће ограничење, па у зависности од тога које се ограничење изабере, могуће је добити различиту вредност за процену грешке. Такође, Moodle је наусмично бирао 3 задатка из једне веће базе задатака, тако да је било која комбинација доле наведених задатака могућа.

Верзија 1

1. задатак

Поставка

Методом половљења интервала, са тачношћу , одредити решење једначине .

Решење

.

2. задатак

Поставка

Функцију , табелирати на интервалу са кораком , користећи 4 децимале. Инверзном интерполацијом одредити нулу функције , ако је познато да је функција строго монотона на датом интервалу.

Решење

.

3. задатак

Поставка

Израчунати интеграл трапезном квадратурном формулом са тачношћу .

Решење

.

Верзија 2

1. задатак

Поставка

Њутновом методом, са тачношћу , одредити решење једначине .

Решење

2. задатак

Поставка

Функцију , табелирати у чворовима . Израчунати користећи Лагранжов интерполациони полином трећег степена. Одредити оцену грешке у тачки .

Решење

.

3. задатак

Поставка

Израчунати интеграл трапезном квадратурном формулом са тачношћу , ако знамо да је .

Решење

.

Верзија 3

1. задатак

Поставка

Методом половљења интервала, са тачношћу , одредити најмање позитивно решење једначине .

Решење

.

2. задатак

Поставка

Функцију , на интервалу са кораком . Израчунати користећи одговарајући Њутнов интерполациони полином трећег степена. Одредити оцену грешке у тачки .

Решење

, грешка је .

3. задатак

Поставка

Израчунати интеграл Симпсоновом квадратурном формулом са тачношћу .

Решење

.

Верзија 4

1. задатак

Поставка

Методом половљења интервала, са тачношћу , одредити решење једначине .

Решење

.

2. задатак

Поставка

Функција је задата својим вредностима у табели:

Инверзном интерполацијом одредити нулу функције , рачунајући са 4 децимале.

Решење

.

3. задатак

Поставка

Израчунати интеграл трапезном квадратурном формулом са тачношћу .

Решење

.

Верзија 5

1. задатак

Поставка

Методом сечице, са тачношћу , одредити решење једначине .

Решење

.

2. задатак

Поставка

Функцију , табелирати на интервалу са кораком . Израчунати користећи Њутнов интерполациони полином трећег степена. Одредити оцену грешке у тачки .

Решење

, грешка је .

3. задатак

Поставка

Израчунати интеграл Симпсоновом квадратурном формулом са тачношћу .

Решење

.

Верзија 6

1. задатак

Поставка

Методом просте итерације, са тачношћу , одредити негативно решење једначине .

Решење

.

2. задатак

Поставка

Функцију , табелирати на интервалу са кораком . Израчунати користећи Њутнов интерполациони полином трећег степена. Одредити оцену грешке у тачки .

Решење

3. задатак

Поставка

Израчунати интеграл трапезном квадратурном формулом са тачношћу .

Решење

Excel решење

Решење верзије 6 у Excel-у може се наћи овде. Дати фајл је колегао предао у оквиру својих предиспитних обавеза и оцењен је са максималних 30 поена.