Вероватноћа и статистика/Теорија
Пређи на навигацију
Пређи на претрагу
Теорија са предавања може, поред задатака, доћи на колоквијумима. Испод је излистана сажета теорија, без додатних примера, ради вежбања за колоквијум.
Увод
Основни појмови
- Статистички експеримент:
- може да се понови више пута под истим условима
- познати су нам сви могући исходи (нотација: )
- не знамо унапред шта ће се десити у конкретном експерименту
- Скуп свих исхода (нотација: ) може бити коначан (бацање новчића), бесконачан, а уколико је бесконачан може бити пребројив (бацање коцке док не падне 6) и непребројив (бирање реалног броја из интервала)
- Догађај: подскуп (нотација: , , ...)
- Догађај се реализује у експерименту ако се оствари у једном од исхода који су његови елементи.
- Операције над догађајима:
- : A или B
- : A и B (нотација за пресек се не користи)
- : A, али не B
- , , : супротан догађај ()
Вероватноћа
- Аксиоме вероватноће: Вероватноћа је функција дефинисана над подскуповима неког скупа ако важи:
- , где су који су међусобно искључиви и којих има коначно или пребројиво бесконачно
- Статистичко одређивање вероватноће: изводимо експеримент пута и региструјемо догађај , тако да нам је број реализација догађаја :
- релативна фреквенција догађаја:
- Модел једнаковероватности исхода: ако су сви исходи из скупа једнаковероватни а број чланова је , онда се вероватноћа догађаја може одредити као количник броја повољних и свих исхода:
- Геометријска вероватноћа: за непребројив скуп који може да се представи геометријски као ограничени објекат (интервал праве, лик у равни, тело у простору) и догађај важи где је мера тог објекта (дужина, површина, запремина).
- Услов: једнаковероватни догађаји су представљени скуповима исте мере и обрнуто
Особине вероватноће
- Теорема 1.1:
- Доказ: како су и међусобно искључиви, важи , па из и трећег аксиома вероватноће добијамо .
- Теорема 1.2:
- Доказ: из и теореме 1.1 следи да је
- Теорема 1.3:
- Доказ:
- Ако су A и B међусобно искључиви, важи да је , па важи да је
- Ако нису, важи да је , па из трећег аксиома добијамо
- Доказ:
- Теорема 1.4:
- Доказ: , а пошто по другој аксиоми онда следи
- Теорема 1.5:
- Доказ:
- Ако су међусобно искључиви, тако да доказ следи по трећој аксиоми
- Ако нису, по трећој аксиоми и теореми 1.3
- Такође важи и
- Доказ:
Условна вероватноћа и независност догађаја
Условна вероватноћа
- Условна вероватноћа догађаја A под условом да се реализовао догађај B: за
- Теорема 2.1: Нека је и . Функција је вероватноћа.
- Доказ:
- За важи . Пошто је и , важи да је . Пошто је , из теореме 1.4 следи да је , односно
- Ако су међусобно искључиви догађаји којих има коначно или пребројиво много, добијамо . Пошто су скупови међусобно искључиви, на основу треће аксиоме следи
- Како су доказане све три аксиоме вероватноће, доказано је и да је условна вероватноћа, такође, вероватноћа.
- Доказ:
Независност догађаја
- Независност догађаја: Догађаји A и B су статистички независни ако важи .
- Независност по паровима: Ако су свака два од (за ) независна, онда су ти догађаји независни по паровима.
- Независност више догађаја у целини: Ако за сваки подскуп скупа догађаја , где је важи , онда су догађаји из тог скупа међусобно независни.
- Теорема 2.2: Ако су догађаји независни и ако је догађај добијен од догађаја () применом коначно много скуповних операција, онда су и догађаји такође независни.
- Доказ: није доказивано.
- Теорема 2.3: За догађаје () важи:
- Доказ: за је ово дефиниција условне вероватноће, за остатак се доказује индукцијом.
- Потпун скуп хипотеза: Ако су догађаји међусобно искључиви и важи онда они чине потпун скуп хипотеза.
- Тотална вероватноћа:
- Бајесова формула: За , важи
- Поузданост уређаја: вероватноћа да је уређај исправан, која зависи од поузданости његових компоненти. Две компоненте могу међусобно бити повезане редно или паралелно, и у зависности од тога одређујемо укупну поузданост те две компоненте.
- Редно:
- Паралелно:
Случајне променљиве
- Случајна променљива: пресликавање скупа свих исхода у скуп реалних бројева.
- Ознака: где је скуп свих бројева у које се пресликавају исходи.
- На основу пребројивости скупа случајне променљиве се деле на две категорије:
- Дискретне: уколико је овај скуп коначан или пребројив, и
- Непрекидне (мешовите): уколико је овај скуп непребројив.
- Расподела случајне променљиве: функција дефинисана над скуповима реалних бројева,
- Закон расподеле вероватноће случајне променљиве: за неку случајну променљиву , чији је скуп вредности , то је скуп вероватноћа где је за све
- Ознака: , тако да
Непрекидне случајне променљиве
- Функција расподеле: , за
- Особине функције расподеле:
- је монотоно неопадајућа функција
- је непрекидна са десне стране за свако
- има граничну вредност са леве стране у свакој тачки
- Функција густине расподеле: ако је ненегативна функција дефинисана на и важи , онда је непрекидна случајна променљива а њена функција густине расподеле.
- је непрекидна је непрекидна
- Ако има коначно или пребројиво много тачака прекида, у њима се може дефинисати произвољно.
- Теорема 3.1: За непрекидну случајну променљиву важи:
-
- Доказ:
-
- Доказ: ако интеграл представимо површином испод функције, није нам битно да ли избацимо нула, једну или две дужи из те површине.
- и
-
- Теорема 3.2: ако је дефинисана на , непрекидна са десне стране и ако је а , тада постоји случајна променљива којој је функција расподеле.
Расподеле
- Бернулијева: (Бернулијева расподела са вероватноћом успеха )
- Закон:
- Модел: индикатор догађаја,
- Биномна:
- Закон:
- Модел: Бернулијева шема је низ Бернулијевих (независних) експеримената, и у сваком експерименту догађај има вероватноћу , а наша случајна променљива јесте број реализација догађаја у изведених експеримената.
- Пуасонова:
- Закон:
- Модел: број ретких догађаја у јединици времена, тако да је просечан број догађаја
- Геометријска:
- Закон:
- Модел: изводе се Бернулијеви експерименти до првог успеха, а наша случајна променљива је број неуспеха
- Паскалова (обрнута биномна):
- Закон:
- Модел: број Бернулијевих експеримената до -тог успеха.
- Хипергеометријска:
- Модел: на располагању је предмета од којих је једне а друге врсте, од њих бирамо предмета () и случајна променљива нам је број предмета прве врсте међу изабраним
- Закон:
- (Дискретна) униформна:
- Закон: , за
- (Непрекидна) униформна:
- Закон: ( је концентрисана на )
- Модел: бирамо број из , а случајна променљива нам је да ли је број у (где је )
- Закон: ( је концентрисана на )
- Експоненцијална:
- Модел: време између Пуасонових догађаја, где је реципрочно просечно време
- Закон:
- Особина одсуства меморије:
Случајни вектори
- Случајни вектор: скуп случајних променљивих дефинисаних на истом скупу исхода
- Заједнички закон расподеле: одређен је ако су познате све вероватноће за све вредности и које случајне променљиве узимају
- Маргинални закони расподеле: појединачни закони расподеле случајних променљивих у вектору, добијени из заједничког закона као
- Независност дискретних случајних променљивих: и су независне ако важи за све вредности и .